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3-D Electromagnetic Scattering and Inverse
Scattering by Magnetodielectric Objects
With Arbitrary Anisotropy in Layered

Uniaxial Media
Jiawen Li, Jianliang Zhuo , Zhen Guan, Feng Han , Member, IEEE, and Qing Huo Liu , Fellow, IEEE

Abstract— 3-D electromagnetic (EM) scattering and inverse
scattering of magnetodielectric objects with arbitrary anisotropy
embedded in layered uniaxial media are studied. The stabilized
biconjugate gradient fast Fourier transform (BCGS-FFT) method
is employed to solve the forward scattering problem formulated
by the combined field volume integral equation (CFVIE). In the
inversion, we use the variational Born iterative method (VBIM)
enhanced by the structural consistency constraint (SCC) to recon-
struct eighteen unknown dielectric parameters of the scatterers
simultaneously. In order to further improve the accuracy of
the reconstructed permittivity, permeability, and conductivity of
the scatterers, we propose the structural continuity scanning
(SCS) technique. Comparisons between the BCGS-FFT solution
and simulated results from finite element method (FEM) are
performed to verify the reliability and accuracy of the forward
solver. Meanwhile, we reconstruct the multiple anisotropic para-
meters of several typical structures embedded in layered uniaxial
media to show the feasibility and anti-noise ability of the inversion
algorithm.

Index Terms— Arbitrary anisotropy, combined field volume
integral equation (CFVIE), magnetodielectric, stabilized biconju-
gate gradient (BCGS), structural consistency constraint (SCC),
variational Born iterative method (VBIM).

I. INTRODUCTION

IN THE past three decades, electromagnetic (EM) scattering
and inverse scattering have been intensively studied due

to their wide applications in microwave imaging [1]–[4],
geophysical remote sensing [5], [6], circuit design [7], etc.
In sophisticated numerical models, the layered structures
and anisotropy of the media [8]–[10] are considered. They
have been used to compute the scattered EM fields from
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underground reservoirs [11] and composite laminates [12],
reconstruct the buried anisotropic objects [13], and design
anisotropic microwave devices [14]. Therefore, it is important
to study the EM scattering and inverse scattering of arbitrary
anisotropic objects embedded in layered media.

In the forward EM scattering modeling, typical numerical
methods mainly include integral equation (IE) method, finite
difference time domain (FDTD) and finite element method
(FEM). The IE method has the intrinsic advantage that only
the computation domain enclosing the scatterers needs to
be discretized. Green’s functions are utilized to account for
the EM wave propagation between transmitters as well as
receivers and the computation domain. The IE mainly includes
volume IE (VIE) [15]–[17], surface IE (SIE) [18], and hybrid
volume-SIE (VSIE) [19]. For conductive scatterers, the SIE is
preferred. But VIE method is better for dealing with scattering
problems of complex inhomogeneous structures. The method
of moments (MoM) is the traditional method used to solve
VIEs [20]–[23]. However, it has a high computation cost [24].

Researchers have proposed several fast forward scattering
algorithms. The first kind is based on subscatterer divi-
sion, field translation, and redistribution, such as the fast
multipole method (FMM) [25] or multilevel fast multipole
algorithm (MLFMA) [19]. The second kind is to use the
fast Fourier transform (FFT) to accelerate the multiplication
of matrices and vectors, such as conjugate gradient FFT
(CG-FFT), sparse matrix canonical grid (SMCG) [26], adap-
tive integration method (AIM) [27], precorrected FFT (pFFT)
[28], and stabilized biconjugate gradient FFT (BCGS-FFT)
method [24]. BCGS-FFT method uses the hexahedron mesh in
the discretization of VIE to facilitate the direct application of
FFT acceleration. In addition, BCGS-FFT can be easily com-
bined with inversion algorithms to reconstruct the unknown
scatterers which also will be carried out in this article. There-
fore, BCGS-FFT is adopted in our forward scattering model.

The methods for solving inverse scattering problems can be
roughly divided into two categories. One is the linear inversion
method, such as Born approximation or regularization method
[29]–[31]. The other is to transform the nonlinear inverse
scattering problem into an optimization problem, and then
solve it iteratively [2], [32], [33]. The linear inversion method
has fast convergence speed and does not need to solve the
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gradient of scattered fields. However, because the multiple
scattering of the objects is not taken into account, it can
only invert for objects with small electrical sizes or low
contrasts. The nonlinear inversion methods can deal with
multiple scattering and high contrast objects. But nonlinearity
and ill-posedness can cause the iterative convergence unstable
and slow. Researchers have proposed several methods to
solve the nonlinear scattering problem, such as Born iterative
method (BIM) [2], [34], distorted BIM (DBIM) [32], [35],
subspace-based DBIM [36], variational BIM (VBIM) [5], [37],
contrast source inversion (CSI) method [33], [38] as well as
subspace-based optimization method (SOM) [39]–[43]. VBIM
converges faster than BIM and consumes less memory than
DBIM. It has been combined with the structural consistency
constraint (SCC) to invert for the biaxial anisotropic scatterers
in our previous work [13].

In this article, we use the BCGS-FFT and VBIM to solve
the scattering and inverse scattering problems of magnetodi-
electric objects with arbitrary anisotropy embedded in layered
uniaxial media. Although several related works have been
accomplished previously, our research has the following new
contributions.

1) The contrast of anisotropic permeability is considered
while previous works [8], [41], [44] only included
the dielectric contrasts. Therefore, combined field VIE
(CFVIE) is used [45].

2) A structural continuity scanning (SCS) algorithm is
proposed to further improve reconstructed results by
VBIM-SCC which is proposed in [13].

3) For the first time, 18 parameters of the symmetrical
permittivity, permeability as well as conductivity tensors
for arbitrary anisotropic scatterers are retrieved simulta-
neously.

One should note that the anisotropy tensors are assumed
symmetrical in this article, which is common for natural and
man-made materials [46].

The organization of this article is as follows. In Section II,
the mathematical formulation of the CFVIE for EM forward
scattering of 3-D arbitrary anisotropic objects embedded in
layered uniaxial media is derived, and weak forms of the
CFVIE are given. Meanwhile, the inversion model is dis-
cussed, and the SCS algorithm used to enhance the VBIM-
SCC results is presented. In Section III, we verify the forward
computation results by comparing them with the numerical
simulations of FEM by the commercial software COMSOL.
In Section IV, several typical anisotropic scatterers are recon-
structed. Accuracy improvement by SCS is shown, and the
anti-noise ability of the inversion algorithm is verified. Finally,
in Section V, conclusions are drawn and discussions are
presented.

II. FORMULATION

The objective of this article is to solve the scattering and
inverse scattering problems of inhomogeneous 3-D magnetodi-
electric objects with arbitrary anisotropy embedded in layered
uniaxial media. The typical configuration of scattering and
inverse scattering is shown in Fig. 1. We assume the object

Fig. 1. Typical configuration for EM scattering in a planarly layered uniaxial
anisotropic medium.

is completely embedded in the mth layer, and has arbitrary
anisotropy for permittivity, permeability, and conductivity.
The relative parameter tensors of the i th layer are written as

ξ
i

b =
⎡
⎣ξb

11 ξb
12 ξb

13
ξb

21 ξb
22 ξb

23
ξb

31 ξb
32 ξb

33

⎤
⎦ = diag

{
ξb

11, ξ
b
22, ξ

b
33

}
(1)

where ξ can be ε, σ or μ, ξb
11 = ξb

22, and the subscript
and superscript b means the background. For convenience,
the relative complex permittivity of the i th layer is written
as

ε
i
b = ε

i
b + σ

i
b

jωε0
(2)

where ω is the angular frequency of the EM wave. The
relative permittivity, permeability, and conductivity tensors of
the scatterer with arbitrary anisotropy are written as

ξ s =
⎡
⎣ξ s

11 ξ s
12 ξ s

13
ξ s

21 ξ s
22 ξ s

23
ξ s

31 ξ s
32 ξ s

33

⎤
⎦ (3)

where s denotes the scatterer, and ξ s
pq = ξ s

qp with p, q = 1,
2 and 3. Similarly, the complex relative permittivity tensor of
the scatterer can be written as

εs = εs + σ s

jωε0
. (4)

A. Forward Model

According to the volume equivalence principle [47],
the scattered electric fields Esct and Hsct are equal to the
fields radiated by the equivalent electric current source Jeq and
equivalent magnetic current source Meq inside the arbitrary
anisotropic objects which can be expressed as

Jeq(r) = jωχε(r)Dtot(r) (5a)

Meq(r) = jωχμ(r)Btot(r) (5b)

where the tensors

χε(r) = [ε(r)− εb]ε−1
(r) (6a)

χμ(r) = [ε(r)− εb]ε−1
(r) (6b)
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are the dielectric and magnetic contrast functions. ε(r) and
μ(r) are the relative complex permittivity tensor and relative
permeability tensor at any point r in the whole space. Dtot =
εε0Etot and Btot = μμ0Htot are the total electric flux density
and magnetic flux density, respectively. The scattered electric
and magnetic fields can be computed by

En
sct (r) = jω

∫
D

G
nm

EJ (r, r′) · χε(r′)Dm
tot(r

′)dr′

+ jω
∫

D
G

nm

EM(r, r′) · χμ(r′)Bm
tot(r

′)dr′ (7a)

Hn
sct (r) = jω

∫
D

G
nm

HJ(r, r′) · χε(r′)Dm
tot(r

′)dr′

+ jω
∫

D
G

nm

HM(r, r′) · χμ(r′)Bm
tot(r

′)dr′ (7b)

where G
nm

EJ , G
nm

EM, G
nm

HJ , and G
nm

HM are the layered dyadic
Green’s functions (DGFs) [48] connecting the equivalent elec-
tric current source and equivalent magnetic current source in
the mth layer and the receiver in the nth layer, and D is the
computation domain enclosing the scatterers and located in
the mth layer. It is easy to formulate the CFVIE as

En
inc(r) = En

tot(r)− En
sct (r) = ε

−1
(r)

Dn
tot(r)
ε0

− jω
∫

D
G

nm

EJ (r, r′) · χε(r′)Dm
tot(r

′)dr′

− jω
∫

D
G

nm

EM(r, r′) · χμ(r′)Bm
tot(r

′)dr′ (8a)

Hn
inc(r) = Hn

tot(r)− Hn
sct (r) = μ

−1
(r)

Bn
tot(r)
μ0

− jω
∫

D
G

nm

HJ(r, r′) · χε(r′)Dm
tot(r

′)dr′

− jω
∫

D
G

nm

HM(r, r′) · χμ(r′)Bm
tot(r

′)dr′ (8b)

where En
inc and Hn

inc are the incident fields evaluated in the
nth layer when the scatterers are absent. The flux Dtot and
Btot are used to replace Etot and Htot because the divergence
conforming basis function will be adopted. Once the total flux
Dtot and Btot in the nth layer are acquired, the scattered fields
anywhere can be obtained through (7).

Before solving the CFVIE (8), we discretize them first to
obtain the linear systems. In this article, we use the same
rooftop basis and testing functions, and take the similar
procedure as in [8]. The flux densities are expanded by the
3-D volumetric roof-top basis function

Dn(q)
tot (r) = ε0

∑
i

d(q)i ψ
(q)
i (r) (9a)

Bn(q)
tot (r) = μ0

∑
i

b(q)i ψ
(q)
i (r) (9b)

where q = 1, 2, 3 are corresponding to x̂ , ŷ, and ẑ three
components, respectively, and i = {I, J, K } are the indexes of
the discretized cells for three components, respectively. d(q)i
and b(q)i are the expansion coefficients for D(q) and B(q),
respectively, and ψ(q) is the basis function with the detailed

expression given in [49]. The incident fields are expanded in
a similar way

En(q)
inc (r) =

∑
i

Ei,(q)
i ψ

(q)
i (r) (10a)

H n(q)
inc (r) =

∑
i

H i,(q)
i ψ

(q)
i (r). (10b)

After testing both sides of the CFVIE (8) with the same roof-
top function ψ

(p)
m (r) with p = 1, 2, 3 for three orthogonal

directions, and m = {M, N, P} the indexes of the discretized
cells, we obtain the domain-integral weak forms of the CFVIE

ei,(p)
m =

∑
i

3∑
q=1

d(q)i ue,(p,q)
m;i − Es,(q)

i v
(p,q)
m;i (11a)

hi,(p)
m =

∑
i

3∑
q=1

b(q)i uh,(p,q)
m;i − H s,(q)

i v
(p,q)
m;i (11b)

where

ue,(p,q)
m;i =

∫
D
ψ
(p)
m (r)ε

−1
(r)ψ(q)i (r)dr (12a)

uh,(p,q)
m;i =

∫
D
ψ
(p)
m (r)μ

−1
(r)ψ(q)i (r)dr (12b)

and ei,(p)
m , hi,(p)

m , and v
(p,q)
m;i are refered to [49]. Es,(q)

i and

H s,(q)
i are components of the scattered fields Es

i and Hs
i

respectively which are computed by

Es
i = jω	V ·

⎛
⎝ε0

∑
i′

G
nm

EJ (i, i′) · (χε,i′ · di′)

+μ0

∑
i′

G
nm

EM(i, i′) · (χμ,i′ · bi′)

⎞
⎠ (13a)

Hs
i = jω	V ·

⎛
⎝ε0

∑
i′

G
nm

HJ(i, i′) · (χε,i′ · di′)

+μ0

∑
i′

G
nm

HM(i, i′) · (χμ,i′ · bi′)

⎞
⎠ (13b)

where i = {I, J, K } are indexes for field point cells while
i′ = {I ′, J ′, K ′} are indexes for equivalent current cells.
	V = 	x	y	z is the discretized cell volume. di′ is a vector
containing d(q)I ′,J ′,K ′ and bi′ is a vector containing b(q)I ′,J ′,K ′ with

q = 1, 2, 3. By performing the integrals in ue,(p,q)
m;i , uh,(p,q)

m;i ,

and v(p,q)
m;i , we obtain the complete weak forms

ei,(p)
m =

p+2∑
q=p

3∑
l=1

Sε,(q)m,l

[
d(q)m+x̂ p(l−2)+(1 − δp,q)d

(q)
m+x̂ p(l−2)+x̂q

]

−
3∑

l=1

Qm,l Es,(p)
m+x̂ p(l−2) (14a)

hi,(p)
m =

p+2∑
q=p

3∑
l=1

Sμ,(q)m,l

[
b(q)m+x̂ p(l−2)+(1 − δp,q)b

(q)
m+x̂ p(l−2)+x̂q

]

−
3∑

l=1

Qm,l H s,(p)
m+x̂ p(l−2) (14b)
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where p, q, p+1, q+1, p+2, q+2 are cyclic indexes with the
period of 3, and δp,q is the Kronecker symbol. x̂ p is the unit
vector in the pth direction. Sε,(q)m,l is the lth component of the

vector Sε,(q)m whose expression is given in [8]. Qm is a column
vector and written as (	V /6)[1 4 1]T where T is the matrix
transpose. Sμ,(q)m,l can be derived from Sε,(q)m,l by replacing ε
with μ. In the discretized CFVIE (14), the coefficient dq and
bq are the unknowns to be solved. The BCGS fast solver is
employed to solve them iteratively. As shown in (13), the inter-
actions between DGFs and discretized equivalent current are
convolutions in the horizontal plane and can be decomposed
into convolution and correlation in the z direction, which has
been discussed in our previous article [8]. Therefore, FFT is
used to accelerate the computation of (13) in each BCGS
iteration step. This lowers the computation time complexity
from O(K M2) to O(K MlogM) where K is the iteration
number and M is the number of unknowns in the discretized
computation domain.

B. Inversion Model

In the inversion model, the scattered fields Esct and Hsct

can be measured and tensors εs , μs and σ s are the unknowns.
We assume MT sources, MR receivers, and MF operation
frequencies are used to collect the scattered fields. The rectan-
gular reconstructed region is divided into N = N1 × N2 × N3
small cells, and each cell has 18 unknowns to be solved for
the arbitrary anisotropic objects. The discretized data equation
for the i th frequency can be written as

L(ωi ) = A(ωi )x(ωi ) (15)

where ωi is the i th angular frequency. L(ωi ) is a 6MT MR

column vector containing the measured scattered data whose
column elements are expressed as

L(ωi ) =
[

Esct (ri R , riT , ωi )
η0Hsct (ri R , riT , ωi )

]
(16)

The η0 is the intrinsic impedance of air. And A(ωi )x(ωi ) rep-
resents the reconstructed scattered fields. A(ωi ) is a 6MT MR×
12N matrix, whose elements for the kth cell are

A(ωi ) = 	V

[
A1(ωi ) A2(ωi )
η0A3(ωi ) η0A4(ωi )

]
(17)

where

A1(ωi ) = jωiε0G
nm

EJ (ri R , r′
k, ωi )Etot(r′

k, riT , ωi ) (18a)

A2(ωi ) = jωiμ0G
nm

EM(ri R , r′
k, ωi )Htot(r′

k, riT , ωi ) (18b)

A3(ωi ) = jωiε0G
nm

HJ(ri R , r′
k, ωi )Etot(r′

k, riT , ωi ) (18c)

A4(ωi ) = jωiμ0G
nm

HM(ri R , r′
k, ωi )Htot(r′

k, riT , ωi ) (18d)

x(ωi ) is the unknown to be solved for arbitrary anisotropic
objects, whose elements for each cell can be written as
[x1(ωi ) x2]T . x1(ωi ) is a complex row vector having six
elements. Each element is (εs

pq −εb
pq)+(1/ jωiε0)(σ

s
pq −σ b

pq)
with p, q = 1, 2, 3 and p ≤ q . Similarly, x2 is also a six
elements row vector and each of them is μs

pq−μb
pq . Obviously,

the unknown x is different for different operation frequencies.

Therefore, the data equation (15) is reformulated as the real
equation with the same unknown for all operation frequencies,
whose expression is rewritten as

L′ = A′y (19)

where L′ is the combination of the real parts and imaginary
parts of the measured scattered fields for all operation frequen-
cies. The total number of elements in L′ is M = 12MT MR MF .
They are evaluated by

L′(ωi ) =

⎡
⎢⎢⎣

Re(Esct (ri R , riT , ωi ))
Re(η0Hsct (ri R , riT , ωi ))
Im(Esct (ri R , riT , ωi ))

Im(η0Hsct (ri R , riT , ωi ))

⎤
⎥⎥⎦ (20)

for the i th frequency. A′ is a M×18N matrix, whose elements
for each frequency are

A′(ωi )

= 	V

⎡
⎢⎢⎢⎢⎢⎣

Re(A1(ωi )) Im
(

A1(ωi )
ωi ε0

)
Re(A2(ωi ))

η0 Re(A3(ωi )) η0 Im(A3(ωi )
ωi ε0

) η0 Re(A4(ωi ))

Im(A1(ωi )) Re
(
−A1(ωi )

ωi ε0

)
Im(A2(ωi ))

η0 Im(A3(ωi )) η0 Re
(
−A3(ωi )

ωi ε0

)
η0 Im(A4(ωi ))

⎤
⎥⎥⎥⎥⎥⎦ .

(21)

The column vector y has 18N real unknowns. For each cell,
it can be written as [y1 y2 y3]T . The y1 is a row vector
having six elements. Each of them is εs

pq − εb
pq with p,

q = 1, 2, 3 and p ≤ q . Similarly, y2 and y3 are also six
elements row vectors which are constructed for the anisotropic
conductivity and permeability, respectively.

In order to solve the data equation (19) by VBIM, we nor-
malize the elements of y by parameters of the background
medium to keep them the same order of magnitude. Therefore,
the normalized y is the contrast and denoted as y′. The matrix
A′ is modified accordingly and denoted as B to keep the
data equation (19) correct. By taking the variation of the data
equation (19) with respect to y′, we obtain

δL′
n = Bnδy′

n+1 (22)

where δL′
n is the difference between the measured data and

the reconstructed data in the nth iteration. Bn can be acquired
from (18) and (21). As the initial value of unknown y′, y′

1 is
set as zero. And δy′

n+1of the (n + 1)th iteration is defined as

δy′
n+1 = y′

n+1 − y′
n . (23)

The cost function with the regularization term in the (n +1)th
iteration step is defined as

F
(
δy′

n+1

) = ‖ δL′
n − Bnδy′

n+1 ‖2

‖ δL′
n ‖2 + γ 2 ‖ δy′

n+1 ‖2

‖ δy′
n ‖2 (24)

where γ is the regularization factor, and ‖ · ‖ is the L2 norm.
‖ δy′

n+1 ‖2/‖ δy′
n ‖2 is a self-adaptive regularization coeffi-

cient, which can make the process of inversion more stable [6].
The minimization of the cost function is equivalent to solving
the following [50]:(

BT
n Bn + γ 2 ‖ δL′

n ‖2

‖ δy′
n ‖2 I

)
δy′

n+1 = BT
n δL

′
n. (25)
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Fig. 2. SCS in three different dimensions. The yellow cell is judged by
VBIM-SCC as “scatterer” and will be checked by SCS. The transparent cells
are the “background” cells. The blue cells are the adjacent “scatterer” cells.

This equation can be efficiently solved by the CG method [51].
In addition, a nonlinear transform is adopted to constrain the
reconstructed parameters in reasonable ranges in the inversion
process [34], [52].

C. Structural Consistency Constraint and Structural
Continuity Scanning

As discussed in Section II-B, there are totally 18 unknown
parameters in each discretized cell for arbitrary anisotropic
scatterers. This makes the inversion more challenging than the
isotropic inversion problem. On the other hand, 18 unknown
parameters share the same geometry structure, which can be
treated as the additional constraint in the VBIM inversion.
Therefore, the Monte Carlo method is used to obtain the
structures of the scatterers, i.e., to judge whether a cer-
tain discretized cell in the inversion domain is the “scat-
terer” or “background.” If it is judged as the “background,”
it will be discarded in the next VBIM iteration since it has
no contribution to the measured scattered data. In this way,
the inversion domain is compressed and the computation
cost is lowered. This is the SCC algorithm, and has been
successfully applied to the inversion of biaxial scatterers in
our previous article [13], and will not be repeated here.

However, SCC is based on Monte Carlo method. Some
“background” cells may be incorrectly judged as “scatterer”
cells. As a result, some faked isolated tiny “scatterer” blocks
will show up in the final reconstructed result, which leads
to the deviation of the retrieved parameter values of the true
“scatterer” blocks away from their true values. In order to
resolve this issue, we propose the SCS algorithm. For a certain
discretized cell in the inversion domain, if it is judged as
“scatterer,” we track its adjacent cells and check whether they
are “scatterer” or “background” cells, as shown in Fig. 2. The
SCS is performed in three different dimensions, i.e., the line
scanning, surface scanning, and volume scanning. A certain
cell which has been judged as “scatterer” by VBIM-SCC
will be regarded as faked one if it cannot survive in any
scanning. In addition, it should be noted that the line scanning
is performed in three orthogonal directions simultaneously, and

Fig. 3. Configuration of a two-block cubic scatterer with the dimensions
of 0.4 m × 0.4 m × 0.4 m embedded in a half-space uniaxial anisotropic
background medium.

the surface scanning is performed in three orthogonal planes
simultaneously. Let us take the line scanning as an example.
As shown in Fig. 2, we count the number of “scatterer” cells
connected to a certain cell which has already been judged
as “scatterer” by VBIM-SCC and will be checked by SCS.
If this number is larger or equal to one, the current cell will be
retained, or it will be regarded as faked one and abandoned in
the next VBIM iteration. But note the above condition must be
satisfied simultaneously in all three directions. For the surface
scanning and volume scanning, the SCS is implemented in
a similar way. The only difference is the threshold of the
number of adjacent “scatterer” cells. They are three for surface
scanning and seven for volume scanning. The threshold values
for three different scanning schemes are chosen according to
the worst case, i.e., assuming the current cell checked by SCS
at the vertex of a cube.

III. FORWARD VALIDATION

In this section, we validate the forward BCGS-FFT solver
by comparing the results with numerical simulations of FEM
by the commercial software COMSOL. The source is a unit
electric dipole, operating at 1 GHz and polarized at the
direction of (1, 1, 1). Such a source polarization means
three components of the dipole moment in the rectangular
coordinate system have the same intensity. In order to mimic
the EM radiation from antennas, we set the first layer air and
put both the transmitter and the receiver arrays in this layer.
The stop criterion of the BCGS iteration residual error is set
to be 10−5. Fig. 3 shows the forward scattering model for
a two-block uniaxial anisotropic cube embedded in a half-
space background medium. The two-block cube with the size
of 0.4 m × 0.4 m × 0.4 m is located at the bottom layer of
the half-space background. The top layer of the background
is air, i.e., ε

1
b = I, μ

1
b = I and σ

1
b = 0. The boundary is at

z = 0. The bottom layer has the dielectric parameters

ε
2
b = diag{1.5, 1.5, 2.0} (26a)

μ
2
b = diag{1.0, 1.0, 1.5} (26b)

σ
2
b = diag{1, 1, 2} mS/m. (26c)
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TABLE I

SCATTERER DIELECTRIC PARAMETERS IN THE FORWARD MODEL

Fig. 4. Comparisons of the total electric and magnetic fields inside the cube and the scattered fields at the receiver array solved by BCGS-FFT and simulated
by FEM. (a) Real parts of Ex of total fields. (b) Imaginary parts of Ex of total fields. (c) Real parts of Ex of scattered fields. (d) Imaginary parts of Ex
of scattered fields. (e) Real parts of Hy of total fields. (f) Imaginary parts of Hy of total fields. (g) Real parts of Hy of scattered fields. (h) Imaginary parts
of Hy of scattered fields.

Two blocks of the scatterer have the same thickness 0.2 m, and
their dielectric parameters are listed in Table I. The centers of
the left block and right block are at (−0.1, 0, 0.4) m and
(0.1, 0, 0.4) m, respectively. The transmitter electric dipole
is located at (0, 0, −0.1) m. The computation domain of
BCGS-FFT has the same size as that of the scatterer and is
discretized into 503 cubic cells with 750 thousand unknowns.
Thus, the sampling density (SD) is larger than 17 points
per wavelength (PPW) inside the cube. For comparisons of
total fields, we only pick 64 uniform sampling points inside
the scatterer. For scattered field comparisons, we place the
receivers at the z = −0.3 m plane. The array consists
of 64 receivers which uniformly distribute in a 0.175 m ×
0.175 m square area, as shown in Fig. 3.

The BCGS-FFT iteration converges after 48 steps with the
residual error of 3.32 × 10−6. Fig. 4 shows comparisons of the
x-components of total electric fields and y-components of total
magnetic fields inside the computation domain and scattered
fields at the receiver array. We can see the BCGS-FFT solu-
tions match the FEM computation results well. Comparisons
of other components have the same good match and are not
shown here.

IV. INVERSION ASSESSMENT

In this section, we perform the inversion to reconstruct
objects with arbitrary anisotropy embedded in layered uniaxial
media. The measured scattered field data are simulated by the
BCGS-FFT forward solver validated in Section III. The first
two models are used to mimic the detection of subsurface
objects. Therefore, there are totally two layers. The top layer is

Fig. 5. Configuration of the inversion model with a concave scatterer with
the dimensions of 0.4 m × 0.2 m × 0.34 m.

air and the bottom layer has the uniaxial dielectric parameters.
The transmitters and receivers are placed in the top layer and
the arbitrary anisotropic objects are embedded in the bottom
layer. In the third model, transmitters and receivers are placed
in two sides of the scatterers which are embedded in the middle
layer. In all these three cases, 18 unknown parameters are
reconstructed simultaneously. The scatterers are embedded in
the second layer which has the dielectric parameters as

ε
2
b = diag{1.5, 1.5, 2.0} (27a)

μ
2
b = diag{1.2, 1.2, 1.8} (27b)

σ
2
b = diag{3, 3, 4} mS/m. (27c)
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TABLE II

SCATTERER DIELECTRIC PARAMETERS OF THE CONCAVE OBJECT

Fig. 6. Reconstructed 3-D profiles of the concave object by VBIM-SCC-SCS. (a)–(l) Relative permittivity. (m)–(r) Conductivity.

All three numerical cases are run on a workstation with
20-cores Xeon E2650 v3 2.3G CPU, 512GB RAM.

A. Concave Object Embedded in the Bottom Layer

As shown in Fig. 5, the concave shape is formed by cutting
a small cube with the size of 0.16 m × 0.2 m × 0.2 m out of
a rectangular shape with the dimensions of 0.4 m × 0.2 m ×
0.34 m. The centers of the cube and the rectangular shape are
(0, 0, 0.3) m and (0, 0, 0.37) m, respectively. The dielectric
parameters of the scatterer are listed in Table II.

The reconstructed region D enclosing the object has the
dimensions of 0.6 m × 0.4 m × 0.6 m and is divided into
18 thousand cells. Its center is located at the (0, 0, 0.4) m. The
size of each cell is 	x = 	y = 	z = 0.02 m. So there are
totally 324 thousand unknowns to be reconstructed. A total of
54 transmitters are uniformly located in a 1.6 m × 1 m plane
at z = −0.2 m. Two operating frequencies, 250 and 300 MHz
are adopted. The scattered fields are collected by an array with
96 receivers which are uniformly located in a 3.3 m × 2.1 m
plane at z = −0.1 m. Thus, there are 124 416 data equations.

We perform the inversion by VBIM-SCC with and without
SCS. The VBIM-SCC terminates after 93 iterations when
the relative residual error (RRE) of the reconstructed scat-
tered field compared with the measured data is less than
the threshold 6 × 10−4 while VBIM-SCC-SCS terminates
after 96 iterations. The restructured 3-D profiles and 2-D

slices of the anisotropic dielectric parameters of the concave
object by VBIM-SCC-SCS are shown in Figs. 6 and 7,
respectively. Note the 2-D slices are displayed with different
cross sections for different parameters. The true location and
shape of the object are illustrated by dotted boxes. We can
see that both the shape and 18 dielectric parameters of the
anisotropic concave scatterer are well reconstructed. Fig. 9
shows the reconstructed relative permittivity slices by VBIM-
SCC without SCS. By comparing with the permittivity slices
shown in Fig. 7, we find VBIM-SCC-SCS outperforms VBIM-
SCC since the isolated “scatterer” cells are not completely
excluded by VBIM-SCC. Comparisons of other anisotropic
parameters show the same results and are not presented.
In order to quantitatively evaluate the improvement facilitated
by the SCS algorithm, we define the model misfit and data
misfit as

Errmodel = ‖mdR − mdT ‖
‖mdT ‖ (28a)

Errdata = ‖daR − daT ‖
‖daT ‖ (28b)

where mdT is the true model parameter and mdR is the
reconstructed parameter. daT is the measured scattered field
and daR is the reconstructed scattered field when iterations
stop. The data misfits of scattered electric and magnetic
fields and model misfits of all reconstructed parameters are
listed in Table III. We can see that the model misfits of
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Fig. 7. Detailed 2-D slices of reconstructed results for the concave object by VBIM-SCC-SCS. (a)–(f) xz slices at y = 0 m for reconstructed relative
permittivity. (g)–(l) yz slices at x = 0.14 m for reconstructed relative permeability. (m)–(r) xy slices at z = 0.26 m for reconstructed conductivity.

TABLE III

MISFITS FOR VBIM-SCC WITH AND WITHOUT SCS FOR THE CONCAVE SCATTERER

Fig. 8. Structure focusing processes by VBIM-SCC with and without SCS are shown from left to right. (a)–(f) With SCS. (g)–(l) Without SCS. The structure
snapshots are taken in the 3rd, 8th, 15th, 22nd, 50th, and the last step in the VBIM iterations.

off-diagonal dielectric parameters are nearly four or five times
larger than those of the diagonal ones. The key reason is
that the background medium is uniaxial anisotropic, and its
off-diagonal dielectric parameters are zero. This makes the
denominator of (28a) rather small when the model misfits of
off-diagonal parameters are evaluated. In addition, the SCS
algorithm not only decreases the data misfits but also reduces
the model misfits of most off-diagonal parameters. Although
the reductions are not significant, they are obvious. The model
misfits of the diagonal dielectric parameters are already small

enough and thus not obviously reduced by the SCS algorithm.
The total computation time for VBIM-SCC and VBIM-SCC-
SCS are 8.5 and 8.8 h, respectively. Because the SCC keeps
reducing the number of unknowns in the iterations, the mem-
ory consumption gradually decreases. Maximum memory con-
sumption and minimal memory consumption by VBIM-SCC
and VBIM-SCC-SCS are almost the same. They are 150 and
27 GB, respectively.

We can see that the SCS almost has a negligible addi-
tional computation cost. Its major contribution is to make the
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Fig. 9. Reconstructed relative permittivity xz slices at y = 0 m by VBIM-
SCC without SCS.

Fig. 10. Computational time and memory consumption of the traditional
VBIM algorithm and the VBIM-SCC-SCS algorithm in each iteration step.
(a) Time for assembling matrix Bn in (22) before inversion. (b) Time of
BCGS-FFT in the forward computation. (c) Time of CG iteration in the
inversion. (d) Total memory consumption.

reconstructed structures smoother. Fig. 8 shows the focusing
processes of the scatterer structures acquired by SCC with and
without SCS. Each snapshot represents the reconstructed struc-
ture in a certain step of VBIM-SCC iterations. We can see that
the reconstructed structure gradually focuses on the shape and
location of the object. The SCS helps to exclude the isolated
faked “scatterer” cells and make the structure smoother.

We also reconstruct the concave scatterer using the tra-
ditional VBIM without SCC-SCS and compare its perfor-
mance with the VBIM-SCC-SCS algorithm. Fig. 10 shows
the comparisons for time and memory consumption in each
iteration step. The time consumption mainly consists of three
parts, BCGS-FFT, assembling matrix Bn in (22) and the CG
iteration. There are three points worth noting in the following.

1) Compared with the traditional VBIM which almost
takes the same time to assemble the matrix in each
iteration, the time for assembling matrix by VBIM-
SCC-SCS decreases quickly in first 20 iteration steps
and then remains almost unchanged. When the BCGS-
FFT-VBIM iterations are executed, the SCC removes

Fig. 11. Configuration of the inversion model with a convex scatterer with
the dimensions of 0.4 m × 0.2 m × 0.34 m.

the “background” cells quickly at the beginning and
then only removes a small number of “background”
cells in the following each iteration step. Therefore,
both the time and memory used for assembling matrix
decrease quickly at the beginning but almost keep
unchanged in following iteration steps, as are shown
in Fig. 10(a) and (d), respectively.

2) The time consumed by BCGS-FFT almost keeps
unchanged for both VBIM and VBIM-SCC-SCS in the
iterations. This is because the SCC only changes the
matrix used in the inversion. In the forward computation,
the domain size remains unchanged even when the SCC
is adopted. However, it should be noted that the BCGS
solver needs more time in each iteration step when
SCC is applied. The SCC-SCS mandatorily modifies the
model parameter distribution in the inversion domain
solved by the CG solver. As a result, the BCGS-FFT
solver requires more iterations to reach the prescribed
convergence threshold.

3) The CG solver needs less time when SCC-SCS is
applied, as is shown in Fig. 10(c). The SCC removes
the “background” cells and thus reduces the number
of unknowns. The best model parameter distribution
becomes easier to find and thus the CG iteration con-
verges faster when SCC is applied. The oscillation trend
in Fig. 10(c) for VBIM without SCC-SCS is due to
the unstable model parameter distribution acquired in
each iteration which is usually caused by complicated
anisotropic scatterers.

B. Convex Object Embedded in the Bottom Layer

In this case, we verify the anti-noise ability of the inver-
sion algorithm. The concave object is replaced by a convex
object, and the configuration of the inversion model is shown
in Fig. 11. The setups of transmitters, receivers, scatterer
dielectric parameters, and the inversion domain are the same
as those of the last case. White Gaussian noise is added to
the simulated scattered field to form synthetic data. We set
the power signal-to-noise ratio (SNR) of the synthetic data
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TABLE IV

MISFITS FOR VBIM-SCC-SCS WITH DIFFERENT LEVELS OF NOISE CONTAMINATION FOR THE CONVEX SCATTERER

Fig. 12. Reconstructed 3-D profiles of the convex object by VBIM-SCC-SCS.

Fig. 13. Detailed xz slices of reconstructed convex object permittivity by
VBIM-SCC-SCS when noise-free. The slices are at y = 0.

20 and 30 dB, respectively. When VBIM-SCC-SCS inver-
sion procedures terminate, the RRE are 0.052%, 10.05%,
and 3.17% for noise-free, SNR = 20 dB, SNR = 30 dB,
respectively. The 3-D profiles of the reconstructed results
are shown in Fig. 12, and detailed slices for noise-free and
SNR = 20 dB are shown in Figs. 13 and 14, respectively.
We only show the relative permittivity profiles and the xz
slices. Other retrieved parameters and slices are similar and
not presented here. The data misfits and model misfits of the
reconstruction are listed in Table IV. We can see that the
restructured shapes and anisotropic dielectric parameters of the
convex scatterer are still reliable even with 20 dB noise conta-
mination. The field misfits are a little larger than the noise to

Fig. 14. Detailed xz slices of reconstructed the convex object permittivity
by VBIM-SCC-SCS when SNR = 20 dB. The slices are at y = 0.

Fig. 15. 3-D iso-surface plots of the reconstructed shapes of the convex
object. (a) Noise-free. (b) SNR = 20 dB.

signal amplitude ratio, which implies that the VBIM-SCC-SCS
has a certain anti-noise ability to retrieve arbitrary anisotropic
objects. Fig. 15 shows the 3-D iso-surfaces of the reconstructed
convex object when noise free and SNR = 20 dB. The noise
contamination distorts the reconstructed shape, but the basic
convex shape remains discernible. The total time consumption
of the inversion for noise free, 20 and 30 dB noise are 7.7, 3.5,
and 3.8 h, respectively. The maximum memory consumption
for all three cases is 150 GB while the minimal memory
consumption is around 20 GB.

C. Two Rectangular Objects Embedded in the Middle Layer

In this case, we apply the VBIM-SCC-SCS algorithm to
the reconstruction of multiple anisotropic objects embedded
in the middle layer of a three-layer medium. As shown
in Fig. 16, the cuboid object has the dimensions of 0.28 m ×
0.2 m × 0.14 m, and the cube object has the dimensions
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TABLE V

SCATTERER DIELECTRIC PARAMETERS OF THE CUBOID AND CUBE

Fig. 16. Configuration of the two-object model with a cuboid scatterer and
a cube scatterer with the dimensions of 0.28 m × 0.2 m × 0.14 m and
0.2 m × 0.2 m × 0.2 m, respectively.

Fig. 17. 3-D reconstructed profiles of the relative permittivity values of two
objects by VBIM-SCC-SCS.

of 0.2 m × 0.2 m × 0.2 m. The dielectric parameters of two
objects are listed in Table V.

The reconstructed region enclosing two objects has the
dimensions of 0.8 m × 0.4 m × 0.8 m and is divided into
32 thousand cells. Its center is located at (0, 0, 0.5) m. The
size of each cell is 	x = 	y = 	z = 0.02 m. So there
are totally 576 thousand unknowns to be reconstructed. A
total of 64 transmitters are uniformly placed in two 1.4 m ×
0.6 m planes at z = −0.2 m and z = 1.2 m, respectively.
Three operation frequencies 250, 300 and 350 MHz are
chosen. The scattered fields are collected by two arrays with
90 receivers which are uniformly located at z = −0.1 m

Fig. 18. Detailed slices of reconstructed relative permittivity values for two
objects when noise free. The xz slices are at y = 0.

Fig. 19. Detailed slices of reconstructed results of the relative permittivity
for two objects when SNR = 20 dB. The xz slices are at y = 0.

and z = 1 m planes, respectively. Thus, there are totally
207 360 data equations.

The reconstructed 3-D profiles of the permittivity of two
objects are shown in Fig. 17. We can see the rectangular
shapes of two objects are almost precisely reconstructed in all
three directions. The xz slices at y = 0 are given in Fig. 18.
Clearly, both the permittivity values and geometry shapes are
well reconstructed. Similar as in the last case, we also add a
20 dB Gaussian white noise to the scattered field and perform
the VBIM-SCC-SCS inversion. The 2-D xz slices are shown
in Fig. 19. Compared with the results shown in Fig. 18,
the geometry shapes of two objects are slightly distorted.
In addition, some faked isolated small scatterers show up.
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TABLE VI

MISFITS FOR VBIM-SCC-SCS WITH DIFFERENT LEVELS OF NOISE CONTAMINATION FOR THE TWO RECTANGULAR SCATTERERS

Fig. 20. 3-D iso-surface plots of the reconstructed two objects. (a) Noise-free.
(b) SNR = 20 dB.

This is more obviously illustrated by the structure iso-surface
plots shown in Fig. 20. One interesting observation is that the
reconstructed cube appears spherical when the scattered fields
are contaminated by noise. The distorted shape of the recon-
structed result is to compensate for the scattered field changes
caused by noise. Because the cost function used in VBIM
is defined by the L2 norm, the shape tends to be spherical.
The data misfits and model misfits of the reconstruction are
listed in Table VI. The total time consumption for the noise-
free and 20 dB noise cases are 20.8 and 8.3 h, respectively.
Maximum memory consumption for both cases is 447 GB
while the minimal memory consumption is around 45 GB.

V. CONCLUSION

In this article, the BCGS-FFT fast solver is employed
to solve the CFVIE formulated for the EM scattering of
magnetodielectric objects with arbitrary anisotropy embedded
in a layered uniaxial background medium. Comparisons with
FEM computation show that both the total fields and scattered
fields solved by BCGS-FFT are precise and reliable.

In the inversion, 18 dielectric parameters per cell of the
arbitrary anisotropic scatterers are reconstructed simultane-
ously by VBIM-SCC, which gradually focuses the scatterer
geometry to its true shapes and locations in each VBIM
iteration step. The SCS algorithm proposed in this article
helps to make the reconstructed shapes smoother by excluding
the faked “scatterer” blocks attached to the true scatterer
surfaces or embedded in the background medium. Anti-noise
tests show that the basic shapes of the reconstruction by
VBIM-SCC-SCS are discernible when 20 dB Gaussian white
noise is added. The dielectric parameter values are also reliable
although the model misfits increase. This shows that the
VBIM-SCC-SCS algorithm has a certain anti-noise ability.

However, there are three types of EM inverse scattering
problems which cannot be solved by the current algorithm.

First, the inversion of isotropic scatterers cannot be accom-
plished by VBIM-SCC-SCS because the SCC is based on
Monte Carlo method. The sampling space is too limited to
obtain a reliable statistical result for isotropic inverse scat-
tering. Second, scatterers with more complicated geometry
structures cannot be reconstructed by VBIM-SCC-SCS. For
example, a cuboid object is formed by connecting the concave
and convex objects used in this article. Since the SCC is
used to distinguish the “scatterer” cell and “background” cell,
it is incapable of depicting the jagged geometry boundary
between the concave and convex scatterers. As a result,
the reconstructed dielectric parameters of the concave and
convex objects will deviate away from the true values due
to the ill posedness of the inversion. Third, VBIM-SCC-SCS
cannot deal with low SNR EM scattering problems. In this
article, we use the 20 and 30 dB noise contamination. We made
a trial and decreased the SNR to 10 dB. The VBIM cannot
converge correctly. The key reason is that the VBIM-SCC is
a deterministic algorithm. When the noise is very large, it is
too difficult for the iterative solver to find a stable solution
to minimize the cost function. All these three issues will be
investigated in our future work by a sophisticated combination
of the EM inverse scattering solver and a machine learning
technique.

In addition, the inversion results presented in this article
are only for numerical simulations. The reconstruction of
arbitrary anisotropic scatterers embedded in layered uniaxial
media from laboratory-measured scattered data will be rather
challenging. First, the EM wave scattering by measurement
instruments or laboratory surroundings can cause errors in the
measured scattered data. In previous work, the measurement
of EM scattering from isotropic objects embedded in layered
media was conducted in a rectangular tub containing a lossy
fluid to reduce the reflections from the surrounding environ-
ment [3]. However, due to the energy attenuation, the mea-
sured signals were weak and SNR was lowered. There were
also successful measurements of scattered EM fields in air.
They were actually performed in an anechoic chamber [53].
These experiments were only for a homogeneous background
media instead of a layered medium. Second, the antennas
used in [3] have the unique vertical polarization. Such a
configuration works for the inversion of isotropic scatterers.
However, it is problematic for the inversion of anisotropic
scatterers since some components of the dielectric parameter
tensors are not sensitive to the change of vertical electric fields.
Therefore, in order to perform the inversion for laboratory
measurements, the polarization of both the transmitting and
receiving antennas should be properly configured to guarantee
the effective measurements of all six components of electric
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and magnetic fields. Third, it is not easy to construct both
the uniaxial background media and the arbitrary anisotropic
scatterer. One possible solution is to use thin isotropic slabs
stacked periodically to mimic the uniaxial background media.
Then, we can use the uniaxial crystal but rotate its optical axial
to simulate the arbitrary anisotropic scatterer with symmetrical
dielectric parameter tensors. However, such an experiment is
too challenging in the current stage and will be left as our
future research work.
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